Laptop computers with expansion slots

“If you need a portable laptop-style computer with an expansion slot or two, there are not many options
.

Portable video system for rugged deployment

Triple screen rugged laptop with video capture hardware


Common Features

  • Large laptop portables
  • Two PCIe expansion slots
  • Fast processing
  • Lots of connectivity

Two alternatives – X500 and NotePAC-III

If you need a portable laptop-style computer with an expansion slot or two, there are not many options
. There’s the Portexa NotePAC-PRO and the Getac X500 Server. In this article, we will look at the similarities, differences, and suggested applications. Disclaimer – we cannot sell Getac X500’s – but this will attempt to be fair and unbiased. Members of our staff have extensive experience using and modifying the Getac X500 and have a healthy respect for it.

Physical

Both systems are large portable laptops.

The X500 (Launched June 2011) is 16.1″ x 12.6″ x 4.6″ (933.2 cubic inches) and the NotePAC-III-PRO-V (Launched February 2019) is 16.75″ x 12″ x 4.5″ (904.5 cubic inches).

The NotePAC of course does feature a triple display monitor, so it’s not quite apples to apples.

The NotePAC-PRO has two PCIe expansion slots as standard, whereas the X500 is expandable using a ‘slice’ that replaces the bottom cover (the dimensions listed include the slice). The X500 slice can be PCI or PCIe, so if you need to support a legacy PCI card then the X500 is the one to choose.

Typical configurations of the NotePAC are considerably more powerful than the X500 and include an Nvidia Quadro RTX4000 graphics card in one of the PCIe slots.

 

Size

X500 – 16.1″ x 12.6″ x 4.6″ (933.2 cubic inches)

NotePAC-III – 16.75″ x 12″ x 4.5″ (904.5 cubic inches)

CPU


X500 – IntelÂź XeonÂź Processor E3-1505M v6 3.0GHz – Max. 4.0GHz
– 8MB IntelÂź Smart Cache

NotePAC – IntelÂź XeonÂź Processor D-2183IT, 16
Cores, 32 Threads, 22MB Cache, 3GHz max, 2.2GHz base.

Ethernet


X500 – Dual Gigabit

NotePAC –

Dual LAN with 10G SFP+ LAN (Fiber)

Dual LAN with 10Gbase-T (RJ45)

Quad LAN with IntelÂź Ethernet Controller I350-AM4 (RJ45)

Removable drives


X500 – 2 Drives (six if no PCIe expansion needed)

NotePAC – 4 Drives

Displays


X500 – 15.6” (1920 x 1080) 

 

NotePAC – 3 x 17.1” for (5760 x 1080)

Graphics


X500 – Intel HD 630 or NVIDIA Quadro P2000

 

NotePAC –  Aspeed AST2500 or NVIDIA Quadro RTX4000

“A major advantage of the NotePAC is the 144Hz refresh rate on all displays as standard which allows the use of 3D imaging for various uses including targeting”

Three screen laptop with PCIe expansion slots

NotePAC-III-PRO-V triple screen - 2 slot - Xeon powered portable. Now with battery option.

 


Displays

The Getac X500 has a 15.6” FHD (1920 x 1080) display with “Quadraclear” filters to give it some usability in sunlight. The NotePAC-III-PRO-V has more than three times the screen real-estate, with 3 x 17.1” FHD displays for a total screen area of 5760 x 1080.

Mil-Spec connection to computer chassis

NotePAC-III-PRO-V triple screen - 2 slot - Xeon powered portable. Now with battery option.

Announcing the NotePAC-III-PRO-V POWER PAC

4+ hour battery life rugged portable

The NotePAC-III-PRO-V is the most powerful computer in it’s class. Triple screen portable computers with 16 core Xeon’s and expansion slots are inherently both powerful and require external power
. Until now!

An additional machined aluminum chassis attaches to the NotePAC-III-PRO-V behind the main chassis, and out of view when using the system. Six x 81Wh batteries give a run-time of over four hours*, without replacement. Using an external charger, unlimited battery powered performance is possible. (With everything maxed out, 100% CPU utilization and Passmark system test maxing out the stress, the battery still lasts for 1.5H.)

Physically mating to the NotePAC-III-PRO-V to form a single transportable package means the system is still robust, reliable and ergonomic to use. The Power PAC chassis is less than 2.75” deep.

The external PSU is a 600W 100-240V AC-DC adaptor putting out 19V and 31.6A through a mil-spec power connector.

Weight: Battery chassis without batteries: 13.2lb, with six batteries: 19.8lb
Includes: USB cable, Power cable, DVD driver.

*Actual run-time may vary according to environmental conditions, workload, battery age etc.

 

Technical Data

  • 4H+ run-time*
  • 6 x 81Wh hot-swappable batteries
  • <2.75″ deep
  • Mil-Spec connection to NotePAC

“What sets the NotePAC-III apart is its combination of very high performance, extreme connectivity and reliable operation. Now it can operate for hours on battery power!”

Derek Hsu

Product manager

Power PAC for NotePAC-III-PRO-V

Precision engineering

Available from Q2 2021

Mil-Spec connection to computer chassis

Battery powered portable with PCI Slots and Mil-Specs

Battery packs hot swappable

 

NotePAC-III-PRO-V triple screen - 2 slot - Xeon powered portable. Now with battery option.

Deployable Video Processing Laptop

Rugged triple screen Xeon portable with video capture card

Portable video system for rugged deployment

Video editing rugged laptop

Server class Ethernet I/o on rear panel

Triple screen rugged portable

Video capture laptop

Triple screen rugged laptop

NotePAC-III-PRO-V

Vertical triple screen portable

NotePAC-III-PRO

Rugged laptop – triple screen

NotePAC-III-SC

Rugged laptop – Special configuration

 

Triple screen rugged laptop with video capture hardware

 

COTS - Commercial, off the shelf computers

Video capture hardware solution

Many security and surveillance missions rely on video. They need to monitor, capture, and disseminate video feeds. If a picture tells a thousand words, then a video is a library full of information. Capturing, processing, and evaluating video footage in a mobile environment can be challenging. Portexa now has a video capture laptop that makes deployed information gathering and video analysis a reality.

The NotePAC-III is a triple screen portable laptop. Machined from aluminum, and with high-end graphics and a video capture card designed for use in theatre. The NotePAC-III has passed Mil-Std 461 (EMC/EMI), DTE-901E (Shock/Torpedo Strike) and 810G (environmental).

“We are proud to have helped develop this excellent deployed solution.”

Three screen notebook with expansion slots

Technical specifications:

Deployable Video Editing Laptop:

Small and light enough to travel with you and go in an airline overhead bin, the NotePAC-III packs a lot of power into its robust chassis.  A 16 core Intel Xeon and up to 512GB of RAM means you can run more virtual machines than most people need.  Four 7.6TB removable SSD drives give you space for video files and other storage.  If that’s not enough, you can attach a NAS (Network-attached storage) through one of the two 10G fiber ports, and still have multiple Gigabit ports free.

Intel Xeon 16 Core Processor

512GB RAM

30TB removable SSD storage 

The standard capture card supports H.264 hardware compression for a multitude of formats:

Max  FPS: 1920×1200p@60/50fps in → 1920×1200p@30/25fps out

1920×1080p@60/50fps in → 1920×1080p@60/50fps out

Video Input:

1×HDMI, 1×DVI-I, 1×YPbPr, 1×SDI, 1×CVBS, 1×S-Video

Video RAW data resolution

1920×1200p@30/25/24fps

1920×1080p@60/50fps

1920×1080p@30/25/24fps

1920×1080i@60/50fps

1280×720p@60/50fps

1280×1024p@60fps

1280×960p@60fps

1024×768p@60fps

800×600p@60fps

640×480p@60fps

720×480p@60fps

720×576p@50fps

720×480i@60fps

720×576i@50fps

Audio Inputs:

1×SDI Embedded Audio, 1×HDMI Embedded Audio, A Pair of RCA Audio Connector (Audio L/R Through Component Cable) Stereo / 16-bit / 32 ~ 48KHz

 

Recording Video Resolution

1920×1200p@30/25/24fps

1920×1080p@60/50fps

1920×1080p@30/25/24fps

1920×1080i@60/50fps

1280×720p@60/50fps

1280×1024p@60fps

1280×960p@60fps

1024×768p@60fps

800×600p@60fps

640×480p@60fps

720×480p@60fps

720×576p@50fps

720×480i@60fps

720×576i@50fps

The computer video card is an Nvidia Quadro P4000, which is the world’s most powerful single-slot professional video card.  It has 8GB of DDR5 RAM and can process 5.2 TFLOPS Single Precision floating point 32 bit.  There is a custom cooling vent for the video card’s fan to ensure maximum performance under load.  This hardware makes video editing feel seamless and productive.

Three 17.1” HD monitors unfold to give a 5760 x 1080 display.  High-quality friction hinges allow the displays to be adjusted for rake and the outer displays tilted in for optimum ergonomics.

The backlit keyboard allows use in low-light conditions such as the CIC (Combat Information Center) or other C4ISR operations center.  A touchpad is provided, and there is a conveniently placed USB port for mouse operation for those that prefer it.

 

More information can be found at NOTEPAC-III

Four-display transportable workstation

 

 

Triple screen deployable workstation closed.

Three screen portable workstation with three multi-touch displays

 

 

 

Massive expansion portable workstation with touch screens

MegaPAC L1, L2 & L3

Now with PCT Multi-touch screens


24" display portable touch screen workstation

monster cooling workstation system

Dual Screen touch-screen portable server / graphics workstation

Dual display with secondary display on top - multi-touch

Multi-touch portable workstations

The latest touch screen technology is now available on large deployable workstation screens.  The ACME MegaPAC is now available with Projected Capacitive Touch screens.  Single, dual and triple screen workstations are available, and whichever system suits your needs, all screens support multi-touch input.

Almost everyone today is using touch-enabled mobile devices, tablet devices, or laptops on a daily basis. Multi-touch capabilities are merely table stakes now in mobile computing devices, and the gaming or signage industries.

Touch screens on mobile devices were revolutionized in 2007 when Apple released the first iPhone.  Of course, Apple did not invent the technology, but it was the first time it was made available on a mass-market device.  What made the iPhone tech interface different?  Gestures, pinch and reverse pinch- to zoom out and in, swiping, etc.  Before that, touch devices were restricted to single points (like clicks).

Now multi-touch gestures are available on the 24” displays of the MegaPAC portable workstation. 

If we take a look at the original touch-screen technologies we can trace the evolution and understand the technology behind multi-touch displays:

 

Some of the earliest touch displays used infra-red beams of light in a grid.  Sensors would ordinarily ‘see’ the beam, but when a finger was placed on the display, it broke one or more beams, giving the touch screen controller an X & Y coordinate for the ‘break’ and provide a ‘touch’ input.  This technology is still in use as it allows the display glass to be made really tough, unlike the restive and capacitive alternatives.

24" display portable touch screen workstation

IR Touch screens are suitable when a harsh environment (for example one that will be used by the public) is expected.  They are:

 

  • Vandal-proof, wear-resistant
  • Maintenance-free, longer life expectancy
  • Versatile touch object (Pointer or finger or glove)
  • Super transparency (no membranes between the display and user)
  • Operable in various light conditions, indoors and outdoors

These sorts of touch displays are usually found in POS, ATM, Kiosks, gaming machines, and industrial control systems.

Touch Screen Technologies

Resistive touch screenResistive touch screens

Resistive touch screens work by sensing the closing of a contact between two conductive membranes.  There are typically an array of dots, visible upon close inspection, that holds the two membranes apart until the ringer or pointer closes the gap by deforming the membrane.  This highlights one of the advantages of resistive screens over capacitive technologies – the pointing device does not need to be conductive, so a fingernail, a glove or a stylus can all work.  Resistive touch screens can be quite precise and don’t suffer from calibration drift as much as some capacitive screens.

Disadvantages are that there are at least two layers of membrane – typically plastic – between the display and the user, which reduces light output, and therefore reduces brightness.  Over time, the flexible membrane can become fatigued and ‘cloudy’ further reducing display clarity.  The other big disadvantage is that resistive touch screens can only detect a single pressure point – so there are no multi-touch gestures like pinch to zoom.

Surface acoustic wave touch screenSurface acoustic wave

Surface acoustic wave touch screens work by sending an ultrasonic wave (ultra-sound wave) across the surface of the glass.  Sensors detect the reflected wave and in some cases the attenuated wavefront that is caused by the pointer or finger.  This is then translated into an X-Y coordinate for the touchpoint.

Capacitive touch screenTraditional capacitive touch

Otherwise known as surface capacitive – work by detecting a change in capacitance of the field in front of the screen caused by a conductive entity of some sort.  Usually a finger.  Capacitive touch screens are commonly made of two layers – a surface insulator and a transparent conductive layer below it. As the human body is an electrical conductor when the touch panel is touched with a finger the electrostatic field of the panel is distorted.  The touch screen controller then decodes the changes in capacitance and returns a touchpoint to the system.  The advantages are that there is no membrane that needs to flex, so the touch-screen should last longer.  Disadvantages include possible drift over time on large displays, which require periodic re-calibration.  Because the sensor is a glass panel, there is less visual degradation than with resistive screens.

Projective Capacitive Touch Screen TechnologyProjective capacitive touch

Instead of one capacitive sensor, there are many, usually on two layers of transparent conductors.

Projected Capacitive Technology (PCT) is fast becoming one of the most prevalent touch technologies for touchscreens. PCT technology is what allows us to tap, pinch, zoom, and scroll with various gesture controls and using multiple fingers, and can be used in a wide range of applications from consumer devices to commercial products. 

 

PCT devices identify touch by measuring the capacitance at each addressable electrode in a dual-layer grid. When you touch the surface of a capacitive device, there is a disturbance in its electrical field (capacitance), which allows the device to determine when and where the touchpoint occurred.

PCT technology uses two main types of sensing methods, self-capacitance and mutual capacitance, each having its own advantages and disadvantages. In short, self-capacitance devices offer a higher signal strength and sensitivity to touch but does not support multi-touch (more than 2 touch-points) like mutual-capacitance devices.

 

“Projected capacitive technologies detect touch by measuring the capacitance at each addressable electrode. When a finger or a conductive stylus approaches an electrode, it disturbs the electromagnetic field and alters the capacitance. This change in capacitance can be measured by the electronics and then converted into X,Y locations that the system can use to detect touch” ( from 3M)

 

ACME’s addition of PCT technology to the MegaPAC results in a superior portable computing platform with a durable, UHD multi-touch touchscreen. The MegaPAC is a high performance, high-fidelity interactive solution that meets customers’ expanding user interface requirements.

 

For more information please contact sales@portexa.com 

 

MegaPAC-RD-24

Portable Workstation


EATX Dual Xeon Portable Power.

Multi-display portable workstation MegaPAC-RD-24

Multi-display portable workstation

Introducing the MegaPAC-RD.  The all-new MegaPAC-RD is available with one, two, three or four displays.  Displays can be mounted on the left or right, and also on top of the main chassis.  In other words, the MegaPAC-RD gives the ultimate in flexibility to arrange the workspace for optimum ergonomics.  Above all, the MegaPAC-RD is the most flexible multi-display portable workstation on the planet!  Displays may also be purchased at a later date to add to capability.

Each display is 24″, and in HD boasts a 120Hz refresh rate – there are also much higher resolution displays available as options.

The NVidia Quadro graphics card supports the 3D Vision wireless glasses kit.

(part number 942‐11431‐0007‐0001)

.

Four-display transportable workstation

Technical specifications:

  • Dual Intel Xeon Gold CPUs – 3.4GHz, 6 Cores, 12 Threads each
  • 128GB RAM as standard
  • 6 PCIe Slots
  • 4 x USB 3.1 Ports
  • 4 x USB 3.0 Ports
  • Four x DP V1.4 Video Connectors
  • NVidia Quadro Graphics, 16GB
  • 120Hz Displays
  • TPM 2.0 fitted
  • Advanced RAID controller with ‘supercap’ backup

Four-display transportable workstation


Unique features

  • Up to four 120Hz 3D capable 24″ displays.
  • Single, Dual, Triple and Quad display configurations
  • Rugged, lightweight all aluminum design.
  • Advanced RAID controller supports RAID levels 0,1,5,6 and 10
  • Up to eight removable drives are supported.
  • GeoINT, C4ISR, Targeting, Situational awareness applications. 
  • This system is a fully customizable configuration including higher resolution displays.  For instance, we have made systems with broadcast quality 4K displays.
  • Similarly, there is a choice of keyboard and pointing device.
  • Wheeled transit case with custom high-grade foam for robust and reliable transportation.
  • This fast deployment high-performance workstation is powerful enough to be the main server in a deployed incident room.
  • The lockable transit case protects the system from blowing sand, dust, and rain.
  • Should you need processors with a higher core count, they are available on request.  The frequency will be reduced – contact us for processor options. 
  • The standard system contains no camera, Wi-Fi or Bluetooth radio.  Other security-related options can be included.
  • In addition – the workstation has a Trusted Platform Module chip – TPM 2.0 
  • In conclusion – if you need a portable workstation that makes a MAC PRO look like an amateur, please contact us.

A HEADING

Environmental:

Temperature MIL-STD-810G

Operating 0C to 40C

Non-Operating -25C to 70C

Cooling Filtered forced air

 

Humidity MIL-STD-810G

Operating 20% to 90% non-condensing

 

Vibration MIL-STD-810G

Operating 10 to 500Hz 0.4g (RMS)

Non-Op 10 to 500 Hz 1.12g (RMS)

 

Shock MIL-STD-810G

Operating 15G, 8ms 1/2 sine

Non-Op 40G, 8ms 1/2 Sine

 

Drop (non operating) 4in

More information

 

Featured Video

120TB+ Removable Storage


120TB SSD Storage

Now available with more than 120TB of removable SSD storage, the NetPAC-RHD16 is the most powerful portable server on the planet.

Learn More

NetPAC-RHD16

The most powerful portable server on the planet

Maximum performance portable

 

COTS computer for network capture / cyber security

Drives removable individually or in packs of four

MilPAC-I top view handle

Ultra high throughput removable media pack

16 Drive portable server

1st rate cooling - massive expansion - transportable COTS workstation with PCIe expansion slots

Most powerful portable: NetPAC-RHD-16

The brief? Make the most powerful portable computer on the planet.  Oh – and all the drives must be removable.  Must be capable of copying a high speed network in real time.  Can you make it so it fits in between 19″ rack rails?

01

Best in the Industry

There has never been a portable server like the NetPAC-RHD-16.  Dual Xeon processors.  1TB RAM. 120TB+ of removable, high speed, high reliability SSD drives.  Separate removable system drive.

02

Reliable Operation

Robust aluminum construction and attention to detail ensure that the NetPAC-RHD16 just works when you get to the work-site.  Micron 5200 series SSDs are robust and reliable.

03

Configured for your application

Maybe you don’t need the most powerful portable computer ever built?  We can build the NetPAC-RHD16 with significantly less costly components, tailored to meet your real-world requirements.

04

Seize the moment

Right now, you can get a quote for the NetPAC-RHD16.  Click here->

Product Highlights


2

Intel Xeon Processors

56

Cores Max

1

CAC Card reader in keyboard

The NetPAC-RHD-16 is the most powerful portable on the planet.  If you would like more information or a quotation, please visit portexa.com

PCIe Lanes explained

An introduction

PCI Express, PCIe, or Peripheral Component Interconnect Express, can be a somewhat complicated computer specification. When your computer first boots, PCIe is what determines the devices that are attached or plugged into the motherboard. It identifies the links between each device, creates a traffic map, and negotiates the width of each link. This identification of devices and connections uses the same protocol as PCI, so no changes were required when changing from PCI to PCIe in either software or operating systems.

A PCIe connection consists of one or more (up to sixteen, at the moment) data-transmission lanes, connected serially. Each lane consists of two pairs of wires, one for transmitting and one for receiving. There are 1, 4, 8 or 16 lanes in a single PCIe slot – denoted as x1, x4, x8, or x16. This is the difference between PCI connections which are parallel (32-bit or 64-bit bidirectional parallel bus) and PCIe which is basically a serial version of PCI.

If you need a portable computer with expansion slots – see ‘portable computers with expansion slots‘.

PCIe Lanes on a Motherboard`

PCIe Lanes

How do PCIe Lanes work?

PCIe is a multi-layered protocol – the layers being a transaction layer, a data link layer, and a physical layer.  The Data-link layer is sub-divided to include a media access control (MAC) layer.  Each lane consists of two unidirectional differential pairsoperating at 2.5, 5, 8 or 16 Gbit/s, depending on the negotiated capabilities. While on the other hand, transmit and receive are separate differential pairs, adding up to a total of four data wires per lane.

Each lane is an independent connection between the PCI controller of the processor chip-set (Southbridge) or the processor itself (which is almost always the graphics card slot) and the expansion card. Bandwidth scales linearly, so a four-lane connection will have twice the bandwidth of a two-lane connection. Depending on the expansion card’s bandwidth requirements, the slot may need to be sized accordingly.

PCIe connection diagram from How stuff works
From How Stuff Works

A physical PCIe x16 slot can accommodate a x1, x4, x8, or x16 card, and can run a x16 card at x16, x8, x4, or x1. A PCIe x8 slot can accommodate a x1 or x4 or x8 card but cannot fit a x16 card. Just to confuse the matter further, there are different versions of PCIe interface.  It’s also possible that a motherboard may have multiple slot sizes and also different PCIe versions: 1.0a, 1.1, 2.0, 2.1, 3.0, 3.1, 4.0 and coming soon 5.0.  (Link to https://en.wikipedia.org/wiki/PCI_Express#PCI_Express_5.0)

BUS & Theoretical Bandwidth Available

BUS Bandwidth
PCI 1056 MBps
AGP 8x 2.1 GBps
PCIe 1.0 / x4 1 GBps
PCIe 1.0 / x8 2 GBps
PCIe 1.0 / x16 4 GBps
PCIe 2.0 / x4 2 GBps
PCIe 2.0 / x8 4 GBps
PCIe 2.0 / x16 8 GBps
PCIe 3.0 / x1 1.97 GBps
PCIe 3.0 / x4 3.94 GBps
PCIe 3.0 / x8 7.88 GBps
PCIe 3.0 / x16 15.75 GBps
PCIe 4.0 / x1 3.94 GBps
PCIe 4.0 / x4 7.88 GBps
PCIe 4.0 / x8 15.75 GBps
PCIe 4.0 / x16 31.5 GBps
PCIe 5.0 / x16

Firewire 400/800

63 GBps

400/800 Mbps

USB 1.0 12 Mbps
USB 2.0 480 Mbps
USB 3.0 4.8 Gbps
USB 3.1 10 Gbps​
Gigabit Ethernet 1 Gbps
IDE (ATA 100) 800 MBps
IDE (ATA 133) 1064 MBps
SATA 1.5 Gbps
SATA II 3 Gbps
SATA III 6 Gbps

Why do PCIe Lanes matter?

Functions your CPU’s PCIe Lanes Control:

  • Onboard Video
  • PCIe 3.0 x16 Slot (usually for video card)
  • 2/U.2 (on some Enthusiast Boards)
  • LAN (on some Enthusiast Boards)

Other functions use your CHIPSET’s PCIe bus lanes. Functions CHIPSET’s PCIe Lanes control may control:

  • SATA hard drives
  • Onboard Sound
  • Onboard RAID
  • Onboard Network Controller/LAN
  • All PCIe slots except the first one
  • Thunderbolt
  • 2/U.2

Quoted amounts of PCIe bandwidth required by individual components:

  • 8-16 Lanes – x16 PCIe Video Cards (Each)
  • 8-16 Lanes – Other Specialized PCIe Cards
  • 4 Lanes – M.2 Drive
  • 4 Lanes – Thunderbolt (uses 4 lanes PCIe 3.0)
  • 4 Lanes – Hardware Based RAID Controllers
  • 2 Lanes (Each) – SSD Drives
  • 2 Lanes – USB 3.1 (Gen. 2)
  • 1 Lane – USB 3.0 (USB 3.1 Gen. 1)
  • 1 Lane – Sound
  • 1 Lane – Network Controllers

Which chips have the most PCIe lanes?

Different chips support different numbers of PCIe lanes. For example: Intel Core i5 or i7-8700K or i9-8950HK have up to 1×16, 2×8, 1×8+2×4 with a maximum of 16 PCIe lanes.  In addition, the 6850K and up i7’s have 40 lanes. The Intel Xeon E5-4669 v4 has a maximum of 40 PCIe lanes at PCIe 3.0, whereas the E7-8894 v4 has ‘only’ 32 lanes (per processor). AMD has upped the ante with their EPYC CPU’s – they have 128 PCIe lanes 3.0.

In the tech industry today, what makes this really complicated is that motherboard manufacturers have to make their motherboards support a range of processors which may have different numbers of PCIe lanes supported.  So a motherboard using an i7-6850K chip may have the capability to address multiple slots at x16, whereas with a ‘lesser’ chip ie. i7-8700K may be fewer lanes available, with only one slot being x16.  Just to complicate things further, NVME and other types of expansions require PCIe lanes. With NVME being a must-have feature for a modern motherboard, there are now even fewer lanes available to the expansion slots. 

Working out how to get the most out of a motherboard in terms of application performance becomes even harder when you need to choose how to connect to the real world.  PCIe lane allocation can make or break the performance of high-speed boards like RAID controllers when they are operating near-maximum capacity (which is now possible due to fast SSD storage). 

While there are some non-PCIe interface options being explored by computer manufacturers, they would also require major hardware changes. All in all, PCIe looks to remain crucial for a while longer, even while the form factor of the connection continues to evolve.

Links:

Adam Savage’s Tested.com did a nice explanation of PCIe speeds and comparison with Thunderbolt.

Anandtech did a nice writeup of the Z170 chipset and the trade-offs that board manufacturers have to make when selecting how to configure the PCH

And here is a nice post explaining how to convert GT/s to Gbps