MegaPAC-RD-24

Portable Workstation


EATX Dual Xeon Portable Power.

Multi-display portable workstation MegaPAC-RD-24

Multi-display portable workstation

Introducing the MegaPAC-RD.  The all-new MegaPAC-RD is available with one, two, three or four displays.  Displays can be mounted on the left or right, and also on top of the main chassis.  In other words, the MegaPAC-RD gives the ultimate in flexibility to arrange the workspace for optimum ergonomics.  Above all, the MegaPAC-RD is the most flexible multi-display portable workstation on the planet!  Displays may also be purchased at a later date to add to capability.

Each display is 24″, and in HD boasts a 120Hz refresh rate – there are also much higher resolution displays available as options.

The NVidia Quadro graphics card supports the 3D Vision wireless glasses kit.

(part number 942‐11431‐0007‐0001)

.

Four-display transportable workstation

Technical specifications:

  • Dual Intel Xeon Gold CPUs – 3.4GHz, 6 Cores, 12 Threads each
  • 128GB RAM as standard
  • 6 PCIe Slots
  • 4 x USB 3.1 Ports
  • 4 x USB 3.0 Ports
  • Four x DP V1.4 Video Connectors
  • NVidia Quadro Graphics, 16GB
  • 120Hz Displays
  • TPM 2.0 fitted
  • Advanced RAID controller with ‘supercap’ backup

Four-display transportable workstation


Unique features

  • Up to four 120Hz 3D capable 24″ displays.
  • Single, Dual, Triple and Quad display configurations
  • Rugged, lightweight all aluminum design.
  • Advanced RAID controller supports RAID levels 0,1,5,6 and 10
  • Up to eight removable drives are supported.
  • GeoINT, C4ISR, Targeting, Situational awareness applications. 
  • This system is a fully customizable configuration including higher resolution displays.  For instance, we have made systems with broadcast quality 4K displays.
  • Similarly, there is a choice of keyboard and pointing device.
  • Wheeled transit case with custom high-grade foam for robust and reliable transportation.
  • This fast deployment high-performance workstation is powerful enough to be the main server in a deployed incident room.
  • The lockable transit case protects the system from blowing sand, dust, and rain.
  • Should you need processors with a higher core count, they are available on request.  The frequency will be reduced – contact us for processor options. 
  • The standard system contains no camera, Wi-Fi or Bluetooth radio.  Other security-related options can be included.
  • In addition – the workstation has a Trusted Platform Module chip – TPM 2.0 
  • In conclusion – if you need a portable workstation that makes a MAC PRO look like an amateur, please contact us.

A HEADING

Environmental:

Temperature MIL-STD-810G

Operating 0C to 40C

Non-Operating -25C to 70C

Cooling Filtered forced air

 

Humidity MIL-STD-810G

Operating 20% to 90% non-condensing

 

Vibration MIL-STD-810G

Operating 10 to 500Hz 0.4g (RMS)

Non-Op 10 to 500 Hz 1.12g (RMS)

 

Shock MIL-STD-810G

Operating 15G, 8ms 1/2 sine

Non-Op 40G, 8ms 1/2 Sine

 

Drop (non operating) 4in

More information

 

Featured Video

120TB+ Removable Storage


120TB SSD Storage

Now available with more than 120TB of removable SSD storage, the NetPAC-RHD16 is the most powerful portable server on the planet.

Learn More

NetPAC-RHD16

The most powerful portable server on the planet

Maximum performance portable

 

COTS computer for network capture / cyber security

Drives removable individually or in packs of four

MilPAC-I top view handle

Ultra high throughput removable media pack

16 Drive portable server

1st rate cooling - massive expansion - transportable COTS workstation with PCIe expansion slots

Most powerful portable: NetPAC-RHD-16

The brief? Make the most powerful portable computer on the planet.  Oh – and all the drives must be removable.  Must be capable of copying a high speed network in real time.  Can you make it so it fits in between 19″ rack rails?

01

Best in the Industry

There has never been a portable server like the NetPAC-RHD-16.  Dual Xeon processors.  1TB RAM. 120TB+ of removable, high speed, high reliability SSD drives.  Separate removable system drive.

02

Reliable Operation

Robust aluminum construction and attention to detail ensure that the NetPAC-RHD16 just works when you get to the work-site.  Micron 5200 series SSDs are robust and reliable.

03

Configured for your application

Maybe you don’t need the most powerful portable computer ever built?  We can build the NetPAC-RHD16 with significantly less costly components, tailored to meet your real-world requirements.

04

Seize the moment

Right now, you can get a quote for the NetPAC-RHD16.  Click here->

Product Highlights


2

Intel Xeon Processors

56

Cores Max

1

CAC Card reader in keyboard

The NetPAC-RHD-16 is the most powerful portable on the planet.  If you would like more information or a quotation, please visit portexa.com

PCIe Lanes explained

An introduction

PCI Express, PCIe or Peripheral Component Interconnect Express, can be a somewhat complicated computer specification. When your computer first boots, PCIe is what determines the devices that are attached or plugged in to the motherboard. It identifies the links between each device, creating a traffic map and negotiates the width of each link. This identification of devices and connections uses the same protocol as PCI, so no changes were required when changing from PCI to PCIe in either software or operating systems.

A PCIe connection consists of one or more (up to sixteen, at the moment) data-transmission lanes, connected serially. Each lane consists of two pairs of wires, one for transmitting and one for receiving. There are 1, 4, 8 or 16 lanes in a single PCIe slot – denoted as x1, x4, x8, or x16. This is the difference between PCI connections which are parallel (32-bit or 64-bit bidirectional parallel bus) and PCIe which is basically a serial version of PCI.

If you need a portable computer with expansion slots – see ‘portable computers with expansion slots‘.

PCIe Lanes on a Motherboard`

PCIe Lanes

How do PCIe Lanes work?

PCIe is a multi-layered protocol – the layers being a transaction layer, a data link layer, and a physical layer.  The Data-link layer is sub-divided to include a media access control (MAC) layer.  Each lane consists of two unidirectional differential pairsoperating at 2.5, 5, 8 or 16 Gbit/s, depending on the negotiated capabilities. While on the other hand, transmit and receive are separate differential pairs, adding up to a total of four data wires per lane.

Each lane is an independent connection between the PCI controller of the processor chip-set (Southbridge) or the processor itself (which is almost always the graphics card slot) and the expansion card. Bandwidth scales linearly, so a four-lane connection will have twice the bandwidth of a two-lane connection. Depending on the expansion card’s bandwidth requirements, the slot may need to be sized accordingly.

PCIe connection diagram from How stuff works
From How Stuff Works

A physical PCIe x16 slot can accommodate a x1, x4, x8, or x16 card, and can run a x16 card at x16, x8, x4, or x1. A PCIe x8 slot can accommodate a x1 or x4 or x8 card but cannot fit a x16 card. Just to confuse the matter further, there are different versions of PCIe interface.  It’s also possible that a motherboard may have multiple slot sizes and also different PCIe versions: 1.0a, 1.1, 2.0, 2.1, 3.0, 3.1, 4.0 and coming soon 5.0.  (Link to https://en.wikipedia.org/wiki/PCI_Express#PCI_Express_5.0)

BUS & Theoretical Bandwidth Available

BUS Bandwidth
PCI 1056 MBps
AGP 8x 2.1 GBps
PCIe 1.0 / x4 1 GBps
PCIe 1.0 / x8 2 GBps
PCIe 1.0 / x16 4 GBps
PCIe 2.0 / x4 2 GBps
PCIe 2.0 / x8 4 GBps
PCIe 2.0 / x16 8 GBps
PCIe 3.0 / x1 1.97 GBps
PCIe 3.0 / x4 3.94 GBps
PCIe 3.0 / x8 7.88 GBps
PCIe 3.0 / x16 15.75 GBps
PCIe 4.0 / x1 3.94 GBps
PCIe 4.0 / x4 7.88 GBps
PCIe 4.0 / x8 15.75 GBps
PCIe 4.0 / x16 31.5 GBps
PCIe 5.0 / x16

Firewire

63 GBps

400 MBps

USB 1.0 12 MBps
USB 2.0 480 MBps
USB 3.0 4.8 GBps
USB 3.1 10 GBps​
Gigabit Ethernet 1 Gbps
IDE (ATA 100) 800 MBps
IDE (ATA 133) 1064 MBps
SATA 1.5 GBps
SATA III 3 GBps
SATA 6 6 GBps

Why do PCIe Lanes matter?

Functions your CPU’s PCIe Lanes Control:

  • Onboard Video
  • PCIe 3.0 x16 Slot (usually for video card)
  • 2/U.2 (on some Enthusiast Boards)
  • LAN (on some Enthusiast Boards)

Other functions use your CHIPSET’s PCIe bus lanes. Functions CHIPSET’s PCIe Lanes control may control:

  • SATA hard drives
  • Onboard Sound
  • Onboard RAID
  • Onboard Network Controller/LAN
  • All PCIe slots except the first one
  • Thunderbolt
  • 2/U.2

Quoted amounts of PCIe bandwidth required by individual components:

  • 8-16 Lanes – x16 PCIe Video Cards (Each)
  • 8-16 Lanes – Other Specialized PCIe Cards
  • 4 Lanes – M.2 Drive
  • 4 Lanes – Thunderbolt (uses 4 lanes PCIe 3.0)
  • 4 Lanes – Hardware Based RAID Controllers
  • 2 Lanes (Each) – SSD Drives
  • 2 Lanes – USB 3.1 (Gen. 2)
  • 1 Lane – USB 3.0 (USB 3.1 Gen. 1)
  • 1 Lane – Sound
  • 1 Lane – Network Controllers

Which chips have the most PCIe lanes?

Different chips support different numbers of PCIe lanes. For example: Intel Core i5 or i7-8700K or i9-8950HK have up to 1×16, 2×8, 1×8+2×4 with a maximum of 16 PCIe lanes.  In addition, the 6850K and up i7’s have 40 lanes. The Intel Xeon E5-4669 v4 has a maximum of 40 PCIe lanes at PCIe 3.0, whereas the E7-8894 v4 has ‘only’ 32 lanes (per processor). AMD has upped the ante with their EPYC CPU’s – they have 128 PCIe lanes 3.0.

In the tech industry today, what makes this really complicated is that motherboard manufacturers have to make their motherboards support a range of processors which may have different numbers of PCIe lanes supported.  So a motherboard using an i7-6850K chip may have the capability to address multiple slots at x16, whereas with a ‘lesser’ chip ie. i7-8700K may be fewer lanes available, with only one slot being x16.  Just to complicate things further, NVME and other types of expansions require PCIe lanes. With NVME being a must-have feature for a modern motherboard, there are now even fewer lanes available to the expansion slots. 

Working out how to get the most out of a motherboard in terms of application performance becomes even harder when you need to choose how to connect to the real world.  PCIe lane allocation can make or break the performance of high-speed boards like RAID controllers when they are operating near-maximum capacity (which is now possible due to fast SSD storage). 

While there are some non-PCIe interface options being explored by computer manufacturers, they would also require major hardware changes. All in all, PCIe looks to remain crucial for a while longer, even while the form factor of the connection continues to evolve.

Links:

Adam Savage’s Tested.com did a nice explanation of PCIe speeds and comparison with Thunderbolt.

Anandtech did a nice writeup of the Z170 chipset and the trade-offs that board manufacturers have to make when selecting how to configure the PCH