Mil-Spec connection to computer chassis

NotePAC-III-PRO-V triple screen - 2 slot - Xeon powered portable. Now with battery option.

Announcing the NotePAC-III-PRO-V POWER PAC

4+ hour battery life rugged portable

The NotePAC-III-PRO-V is the most powerful computer in it’s class. Triple screen portable computers with 16 core Xeon’s and expansion slots are inherently both powerful and require external power…. Until now!

An additional machined aluminum chassis attaches to the NotePAC-III-PRO-V behind the main chassis, and out of view when using the system. Six x 81Wh batteries give a run-time of over four hours*, without replacement. Using an external charger, unlimited battery powered performance is possible. (With everything maxed out, 100% CPU utilization and Passmark system test maxing out the stress, the battery still lasts for 1.5H.)

Physically mating to the NotePAC-III-PRO-V to form a single transportable package means the system is still robust, reliable and ergonomic to use. The Power PAC chassis is less than 2.75” deep.

The external PSU is a 600W 100-240V AC-DC adaptor putting out 19V and 31.6A through a mil-spec power connector.

Weight: Battery chassis without batteries: 13.2lb, with six batteries: 19.8lb
Includes: USB cable, Power cable, DVD driver.

*Actual run-time may vary according to environmental conditions, workload, battery age etc.


Technical Data

  • 4H+ run-time*
  • 6 x 81Wh hot-swappable batteries
  • <2.75″ deep
  • Mil-Spec connection to NotePAC

“What sets the NotePAC-III apart is its combination of very high performance, extreme connectivity and reliable operation. Now it can operate for hours on battery power!”

Derek Hsu

Product manager

Power PAC for NotePAC-III-PRO-V

Precision engineering

Available from Q2 2021

Mil-Spec connection to computer chassis

Battery powered portable with PCI Slots and Mil-Specs

Battery packs hot swappable


NotePAC-III-PRO-V triple screen - 2 slot - Xeon powered portable. Now with battery option.

Deployable Video Processing Laptop

Rugged triple screen Xeon portable with video capture card

Portable video system for rugged deployment

Video editing rugged laptop

Server class Ethernet I/o on rear panel

Triple screen rugged portable

Video capture laptop

Triple screen rugged laptop


Vertical triple screen portable


Rugged laptop – triple screen


Rugged laptop – Special configuration


Triple screen rugged laptop with video capture hardware


COTS - Commercial, off the shelf computers

Video capture hardware solution

Many security and surveillance missions rely on video. They need to monitor, capture, and disseminate video feeds. If a picture tells a thousand words, then a video is a library full of information. Capturing, processing, and evaluating video footage in a mobile environment can be challenging. Portexa now has a video capture laptop that makes deployed information gathering and video analysis a reality.

The NotePAC-III is a triple screen portable laptop. Machined from aluminum, and with high-end graphics and a video capture card designed for use in theatre. The NotePAC-III has passed Mil-Std 461 (EMC/EMI), DTE-901E (Shock/Torpedo Strike) and 810G (environmental).

“We are proud to have helped develop this excellent deployed solution.”

Three screen notebook with expansion slots

Technical specifications:

Deployable Video Editing Laptop:

Small and light enough to travel with you and go in an airline overhead bin, the NotePAC-III packs a lot of power into its robust chassis.  A 16 core Intel Xeon and up to 512GB of RAM means you can run more virtual machines than most people need.  Four 7.6TB removable SSD drives give you space for video files and other storage.  If that’s not enough, you can attach a NAS (Network-attached storage) through one of the two 10G fiber ports, and still have multiple Gigabit ports free.

Intel Xeon 16 Core Processor


30TB removable SSD storage 

The standard capture card supports H.264 hardware compression for a multitude of formats:

Max  FPS: 1920×1200p@60/50fps in 1920×1200p@30/25fps out

1920×1080p@60/50fps in 1920×1080p@60/50fps out

Video Input:

1×HDMI, 1×DVI-I, 1×YPbPr, 1×SDI, 1×CVBS, 1×S-Video

Video RAW data resolution















Audio Inputs:

1×SDI Embedded Audio, 1×HDMI Embedded Audio, A Pair of RCA Audio Connector (Audio L/R Through Component Cable) Stereo / 16-bit / 32 ~ 48KHz


Recording Video Resolution















The computer video card is an Nvidia Quadro P4000, which is the world’s most powerful single-slot professional video card.  It has 8GB of DDR5 RAM and can process 5.2 TFLOPS Single Precision floating point 32 bit.  There is a custom cooling vent for the video card’s fan to ensure maximum performance under load.  This hardware makes video editing feel seamless and productive.

Three 17.1” HD monitors unfold to give a 5760 x 1080 display.  High-quality friction hinges allow the displays to be adjusted for rake and the outer displays tilted in for optimum ergonomics.

The backlit keyboard allows use in low-light conditions such as the CIC (Combat Information Center) or other C4ISR operations center.  A touchpad is provided, and there is a conveniently placed USB port for mouse operation for those that prefer it.


More information can be found at NOTEPAC-III

Four-display transportable workstation



Triple screen deployable workstation closed.

Three screen portable workstation with three multi-touch displays




Massive expansion portable workstation with touch screens

MegaPAC L1, L2 & L3

Now with PCT Multi-touch screens

24" display portable touch screen workstation

monster cooling workstation system

Dual Screen touch-screen portable server / graphics workstation

Dual display with secondary display on top - multi-touch

Multi-touch portable workstations

The latest touch screen technology is now available on large deployable workstation screens.  The ACME MegaPAC is now available with Projected Capacitive Touch screens.  Single, dual and triple screen workstations are available, and whichever system suits your needs, all screens support multi-touch input.

Almost everyone today is using touch-enabled mobile devices, tablet devices, or laptops on a daily basis. Multi-touch capabilities are merely table stakes now in mobile computing devices, and the gaming or signage industries.

Touch screens on mobile devices were revolutionized in 2007 when Apple released the first iPhone.  Of course, Apple did not invent the technology, but it was the first time it was made available on a mass-market device.  What made the iPhone tech interface different?  Gestures, pinch and reverse pinch- to zoom out and in, swiping, etc.  Before that, touch devices were restricted to single points (like clicks).

Now multi-touch gestures are available on the 24” displays of the MegaPAC portable workstation. 

If we take a look at the original touch-screen technologies we can trace the evolution and understand the technology behind multi-touch displays:


Some of the earliest touch displays used infra-red beams of light in a grid.  Sensors would ordinarily ‘see’ the beam, but when a finger was placed on the display, it broke one or more beams, giving the touch screen controller an X & Y coordinate for the ‘break’ and provide a ‘touch’ input.  This technology is still in use as it allows the display glass to be made really tough, unlike the restive and capacitive alternatives.

24" display portable touch screen workstation

IR Touch screens are suitable when a harsh environment (for example one that will be used by the public) is expected.  They are:


  • Vandal-proof, wear-resistant
  • Maintenance-free, longer life expectancy
  • Versatile touch object (Pointer or finger or glove)
  • Super transparency (no membranes between the display and user)
  • Operable in various light conditions, indoors and outdoors

These sorts of touch displays are usually found in POS, ATM, Kiosks, gaming machines, and industrial control systems.

Touch Screen Technologies

Resistive touch screenResistive touch screens

Resistive touch screens work by sensing the closing of a contact between two conductive membranes.  There are typically an array of dots, visible upon close inspection, that holds the two membranes apart until the ringer or pointer closes the gap by deforming the membrane.  This highlights one of the advantages of resistive screens over capacitive technologies – the pointing device does not need to be conductive, so a fingernail, a glove or a stylus can all work.  Resistive touch screens can be quite precise and don’t suffer from calibration drift as much as some capacitive screens.

Disadvantages are that there are at least two layers of membrane – typically plastic – between the display and the user, which reduces light output, and therefore reduces brightness.  Over time, the flexible membrane can become fatigued and ‘cloudy’ further reducing display clarity.  The other big disadvantage is that resistive touch screens can only detect a single pressure point – so there are no multi-touch gestures like pinch to zoom.

Surface acoustic wave touch screenSurface acoustic wave

Surface acoustic wave touch screens work by sending an ultrasonic wave (ultra-sound wave) across the surface of the glass.  Sensors detect the reflected wave and in some cases the attenuated wavefront that is caused by the pointer or finger.  This is then translated into an X-Y coordinate for the touchpoint.

Capacitive touch screenTraditional capacitive touch

Otherwise known as surface capacitive – work by detecting a change in capacitance of the field in front of the screen caused by a conductive entity of some sort.  Usually a finger.  Capacitive touch screens are commonly made of two layers – a surface insulator and a transparent conductive layer below it. As the human body is an electrical conductor when the touch panel is touched with a finger the electrostatic field of the panel is distorted.  The touch screen controller then decodes the changes in capacitance and returns a touchpoint to the system.  The advantages are that there is no membrane that needs to flex, so the touch-screen should last longer.  Disadvantages include possible drift over time on large displays, which require periodic re-calibration.  Because the sensor is a glass panel, there is less visual degradation than with resistive screens.

Projective Capacitive Touch Screen TechnologyProjective capacitive touch

Instead of one capacitive sensor, there are many, usually on two layers of transparent conductors.

Projected Capacitive Technology (PCT) is fast becoming one of the most prevalent touch technologies for touchscreens. PCT technology is what allows us to tap, pinch, zoom, and scroll with various gesture controls and using multiple fingers, and can be used in a wide range of applications from consumer devices to commercial products. 


PCT devices identify touch by measuring the capacitance at each addressable electrode in a dual-layer grid. When you touch the surface of a capacitive device, there is a disturbance in its electrical field (capacitance), which allows the device to determine when and where the touchpoint occurred.

PCT technology uses two main types of sensing methods, self-capacitance and mutual capacitance, each having its own advantages and disadvantages. In short, self-capacitance devices offer a higher signal strength and sensitivity to touch but does not support multi-touch (more than 2 touch-points) like mutual-capacitance devices.


“Projected capacitive technologies detect touch by measuring the capacitance at each addressable electrode. When a finger or a conductive stylus approaches an electrode, it disturbs the electromagnetic field and alters the capacitance. This change in capacitance can be measured by the electronics and then converted into X,Y locations that the system can use to detect touch” ( from 3M)


ACME’s addition of PCT technology to the MegaPAC results in a superior portable computing platform with a durable, UHD multi-touch touchscreen. The MegaPAC is a high performance, high-fidelity interactive solution that meets customers’ expanding user interface requirements.


For more information please contact